Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronic, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use.
Electrical engineering is now divided into a wide range of different fields, including computer engineering, systems engineering, power engineering, telecommunications, radio-frequency engineering, signal processing, instrumentation, photovoltaic cells, electronics, and optics and photonics. Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, power electronics, electromagnetics and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, mechatronics/control, and electrical materials science.
Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practising engineers may have professional certification and be members of a professional body or an international standards organization. These include the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (IET) (formerly the IEE).
Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from circuit theory to the management skills of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to sophisticated design and manufacturing software.
Mechatronics is an engineering discipline which deals with the convergence of electrical and mechanical systems. Such combined systems are known as electromechanical systems and have widespread adoption. Examples include automated manufacturing systems, heating, ventilation and air-conditioning systems, and various subsystems of aircraft and automobiles. Electronic systems design is the subject within electrical engineering that deals with the multi-disciplinary design issues of complex electrical and mechanical systems.
The term mechatronics is typically used to refer to macroscopic systems but futurists have predicted the emergence of very small electromechanical devices. Already, such small devices, known as Microelectromechanical systems (MEMS), are used in automobiles to tell airbags when to deploy, in digital projectors to create sharper images, and in inkjet printers to create nozzles for high definition printing. In the future it is hoped the devices will help build tiny implantable medical devices and improve optical communication.
Electrical engineers typically possess an academic degree with a major in electrical engineering, electronics engineering, electrical engineering technology, or electrical and electronic engineering. The same fundamental principles are taught in all programs, though emphasis may vary according to title. The length of study for such a degree is usually four or five years and the completed degree may be designated as a Bachelor of Science in Electrical/Electronics Engineering Technology, Bachelor of Engineering, Bachelor of Science, Bachelor of Technology, or Bachelor of Applied Science, depending on the university. The bachelor’s degree generally includes units covering physics, mathematics, computer science, project management, and a variety of topics in electrical engineering. Initially such topics cover most, if not all, of the subdisciplines of electrical engineering. At some schools, the students can then choose to emphasize one or more subdisciplines towards the end of their courses of study.
An example circuit diagram, which is useful in circuit design and troubleshooting.
At many schools, electronic engineering is included as part of an electrical award, sometimes explicitly, such as a Bachelor of Engineering (Electrical and Electronic), but in others, electrical and electronic engineering are both considered to be sufficiently broad and complex that separate degrees are offered.
Some electrical engineers choose to study for a postgraduate degree such as a Master of Engineering/Master of Science (MEng/MSc), a Master of Engineering Management, a Doctor of Philosophy (PhD) in Engineering, an Engineering Doctorate (Eng.D.), or an Engineer’s degree. The master’s and engineer’s degrees may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy and Engineering Doctorate degrees consist of a significant research component and are often viewed as the entry point to academia. In the United Kingdom and some other European countries, Master of Engineering is often considered to be an undergraduate degree of slightly longer duration than the Bachelor of Engineering rather than a standalone postgraduate degree.